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Abstract. The influence of the Rashba spin-orbit coupling on the electron spin dynamics is investigated
for a ballistic semiconductor quantum wire with a finite width. We monitor the spin evolution using the
time-dependent Schrödinger equation. The pure spin precession characteristic of the 1D limit is lost in a
2D wire with a finite lateral width. In general, the time evolution in the latter case is characterized by
several frequencies and a nonrigid spin motion.

PACS. 73.21.Hb Quantum wires – 73.22.Dj Single particle states

1 Introduction

The control of the Rashba spin-orbit coupling is one of
the most promising tools for the manipulation of the spin
of the carriers within semiconductor heterostructures. In
the last years, there have appeared several proposals of
spin-based devices relying on this mechanism [1,2]. Among
them we cite the spin-FET, first proposed by Datta and
Das [3], the spin filters [4] and the spin guides [5].

The origin of the Rashba spin-orbit coupling in III-V
semiconductor heterostructures lies in their asymmetry.
The lack of space symmetry causes a local electric field
perpendicular to the plane of the heterostructure. The
associated relativistic correction makes the electrons feel
an effective magnetic field which separates in energy the
different spin states [6]. This dependence of the Rashba
spin-orbit coupling on the interface electric field remains
as a great advantage for spin control in semiconductors.
Indeed, the intensity of the coupling can be controlled by
applying a vertical electric field to the heterostructure, as
proved experimentally by Nitta et al. [7].

In this work, we shall focus on the spin precessional
properties of conduction electrons in a quantum wire hav-
ing a finite width. The problem of the quantum wire with
Rashba coupling has already been studied by Moroz and
Barnes [8], who addressed the ballistic conductance and
the subband structure of the wire; and by Mireles and
Kirczenow [9], who analyzed the spin-dependent trans-
port within a tight binding model. Following a different
approach, Governale and Zülicke [10] have also treated
the problem, and, more recently, Egues et al. [11] have
proposed to take advantadge of the coupling of the first
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two transverse subbbands to create a spin-FET with en-
hanced spin control. In this work, we shall concentrate on
how the coupling of the different transverse subbands, due
to the Rashba term, affects the electron spin precession.

The Hamiltonian representing the Rashba spin-orbit
coupling in terms of the electron momentum (p) and the
Pauli matrices (σ’s) reads

HSO =
λR

�
( pyσx − pxσy ) , (1)

where λR represents the intensity of the spin-orbit cou-
pling, depending on the heterostructure’s vertical electric
field. To stress the experimental feasibility we have as-
sumed a value λR = 1.03 × 10−9 eV cm, as reported in
reference [7] for an In0.53Ga0.47As/In0.52Al0.48As quan-
tum well. Other experimental parameters corresponding
to this sample are: m∗ = 0.05me, ε = 13.9 for InGaAs,
and the Fermi wavevector kF = 3.5 × 106 cm−1, corre-
sponding to a 2DEG density ns � 2× 1012 cm−2. All cal-
culations discussed below have been obtained using this
parameter set.

We assume a wire oriented along the y axis with con-
finement achieved in the x direction. In the simplified
model of a one-dimensional wire the terms containing x
or px are dropped and the remaining Hamiltonian

H1D =
p2

y

2m∗ +
λR

�
pyσx (2)

is compatible with the observables {py, σx}. That is, the
energy eigenstates are characterized by their x spin com-
ponent and y momentum (�ky). In this system, the state
of an electron having well-defined momentum and with
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arbitrary spin orientation decomposes into a combination
of the spin eigenstates |sx+〉 and |sx−〉, leading to a spin
precessional motion about the x axis, i.e., in the Sy-Sz

plane. The spin evolution is characterized by an angu-
lar frequency ωP , corresponding to the energy difference
between the two spin eigenstates, �ωP = 2λRky . This pre-
cession frequency leads to the well-known formula for the
angular modulation of spin orientation θR = 2m∗λRL/�

2,
for a channel length L.

When a two-dimensional free motion of the electrons
is considered, the eigenstates of the Hamiltonian

H2D =

(
p2

x + p2
y

)
2m∗ +

λR

�
(pyσx − pxσy) (3)

have again well-defined momentum �k and spin orienta-
tion, but the latter depends now on the wavevector k.
Using spinorial notation in the usual basis of |+〉 and |−〉
states for the Sz spin component, the wave functions and
energies for a given k read

χk± = eik·r
(

1

∓ieiφ

)
, (4)

εk± =
�

2

2m∗ (k2
x + k2

y) ± λR |k|, (5)

where φ = atan(ky/kx) is the polar angle for k. Note that
the spinors (4) are eigenstates of a spin component or-
thogonal to k, i.e., the spin orientation depends on the
spatial wavevector, always pointing in perpendicular di-
rection to k. As in the 1D case, a state having well-defined
momentum �k and arbitrary spin orientation decomposes
into a linear combination of the above 2D eigenspinors
χk±. Therefore, the evolution under H2D leads again to a
spin precession of frequency ωP given by the energy dif-
ference between the corresponding ‘up’ and ‘down’ eigen-
states. Namely, �ωP = 2λR|k|; the same result of the 1D
case. An important difference is, however, that the plane
of spin precession depends in 2D on the spatial orientation
of k. Having analyzed the bulk limits, the question that
arises is how the above pure spin precession is modified
when the complete translational invariance of the homo-
geneous 1D and 2D systems is lost in a wire with a finite
width.

2 The model

In order to model the quantum wire we maintain the
translational invariance in the longitudinal coordinate (y)
while, in the transversal direction (x) this symmetry is
broken by a parabolic confinement

V (x) =
1
2
m∗ω2

0x
2, (6)

where ω0 determines the width of the wire. The

Hamiltonian representing the quantum wire reads

H =
p2

2m∗ +
1
2
m∗ω2

0 x
2 +

λR

�
(pyσx − pxσy) . (7)

As our system still retains one spatial symmetry we can
reduce the spinorial 2D problem to a 1D one by factorizing
out the y dependence,(

ψnky↑(r)
ψnky↓(r)

)
= eikyy

(
φnky↑(x)
φnky↓(x)

)
. (8)

The continuum index ky in equation (8) labels the
state of free motion in longitudinal direction while the
discrete index n accounts for the different transversal sub-
bands of the confining dimension. Introducing this general
form of energy eigenspinor we obtain the reduced Hamil-
tonian for the spinorial transverse dependence.

Htr =
�

2k2
y

2m∗ +
p2

x

2m∗ +
m∗ω2

0

2
x2 +

λR

�
(�kyσx − pxσy) . (9)

The transverse Hamiltonian, equation (9), can be
analyzed by seeking direct solutions to the stationary
Schrödinger equation or, equivalently, solving the time-
dependent Schrödinger equation for given initial condi-
tions. We shall use the latter approach since it yields a
suitable scenario to address the dynamical spin evolution.
For a given wavevector ky the coupled time-dependent
equations for the two spin components of any spinorial
wavepacket: fky↑(x) and fky↓(x) read

i�∂t

(
fky↑(x, t)
fky↓(x, t)

)
=(

H(x)
0 λR (ky + ∂x)

λR (ky − ∂x) H(x)
0

)(
fky↑(x, t)
fky↓(x, t)

)
, (10)

where

H(x)
0 = − �

2

2m∗ ∂
2
x +

m∗ω2
0

2
x2. (11)

Note that in H(x)
0 we have dropped the longitudinal kinetic

contribution, not important for time evolution.
It is well known that in quantum mechanics time evo-

lution can provide complete information about the sta-
tionary states of a Hamiltonian through spectral analysis.
Indeed, for a time-independent Hamiltonian an arbitrary
wavepacket can be expanded as a series in the stationary
energy eigenstates(

fky↑(x, t)
fky↓(x, t)

)
=

∑
n

Anky e
− i

�
εnky t

(
φnky↑(x)
φnky↓(x)

)
. (12)

Using the fast Fourier transform (FFT) we can extract the
harmonic frequencies (εnky energies) from the evolution of
an arbitrary wavepacket. Furthermore, if this analysis is
repeated at different spatial points the space components
of the energy eigenspinor φnky↑(x) and φnky↓(x), can also
be obtained.



M. Vaĺın-Rodŕıguez et al.: Electron spin precession in semiconductor quantum wires with Rashba spin-orbit coupling 361

3 Results

The Hamiltonian of equation (7), apart from kinetic and
potential terms, contains the longitudinal and transversal
spin-orbit contributions coupling x and y spatial motions
with the electron spin. It is worth noticing that there is
an analytical limit to the solution of equation (10) when
pxfky � �kyfky . In this case the solutions are similar to
those discussed above for H1D, i.e., the eigenstates are still
plane waves in y direction with spin oriented along x but
now with an harmonic oscillator transverse profile. The
corresponding energy spectrum is also analytically known

ε
(0)
nkys =

�
2k2

y

2m∗ +
(
n+

1
2

)
�ω0 + λRkys, (13)

where s = +1 for +x spin orientation (up) and s = −1
for −x (down). If we substract the longitudinal kinetic
term �

2k2
y/2m∗, common to both spin orientations, the

remaining band structure consists of doubly split trans-
verse subbands, linear in ky and having a common origin
at (n+1/2)�ω0. Another analytical limit can be obtained
neglecting λRpyσx in (7); in this case, spin-orbit interac-
tion only produces a little constant shift in the energy
levels that does not depend on spin orientation.

As a check of our numerical procedure, Figure 1 shows
the results for a simulation using the above simplified
Hamiltonian (neglecting λRpxσy in equation (7)). The pa-
rameters used are: �ω0 = 3.5 meV, ky = 1.0 × 106 cm−1

and the above mentioned spin-orbit intensity. The ini-
tial input for the time-evolution is a Gaussian-shaped
wavepacket having spin oriented in +z,(

fky↑(x, 0)
fky↓(x, 0)

)
≡ 1

2σ
√
π
e

−(x−x0)2

2σ2

(
1
0

)
. (14)

Using a finite x0 and σ �
√

�

m∗ω0
we ensure that the ini-

tial wavepacket is composed of several transversal eigen-
states in the low energy region. Figure 1 shows the spec-
trum corresponding to the wavepacket’s oscillations at
an arbitrary x point, as well as the transversal densities
extracted for the two lowest peaks. An excellent agree-
ment between numerical and analytical energies and eigen-
spinors is found. Figure 2 represents the dynamical spin
evolution for the above initial spinor, corresponding to a
pure precession in excellent agreement with the analytical
frequency �ωP = 2λRky.

Note that, in this analytical regime, spin precession is
independent of the transversal state, as the energy gaps
are common to the different subbands. This statement im-
plies that spin evolution is independent of the transver-
sal profile of the injected particles. Numerically, we have
checked that arbitrary initial profiles for the x dependence
lead to the same spin dynamics.

The above analytical regime no longer holds when the
transverse motion couples with the spin through the term
λRpxσy in equation (7). Complete analytical solutions for
the Hamiltonian including the full spin-orbit interaction
are not available and numerical calculations are needed to

Fig. 1. Fast Fourier transform (FFT) in logarithmic scale cor-
responding to the oscillations of a injected wavepacket evolving
with the simplified Hamiltonian (without transversal spin-orbit
coupling). Dotted lines indicate the analytical eigenvalues la-
beled by the transversal subband index n and spin orientation
s. Right panels show the non-zero densities corresponding to
the two lowest eigenstates; charge and spin densities have been
shifted in panel b to better distinguish them.

Fig. 2. Lower panel: time-evolution of the spin expectation
values in the Sy−Sz plane. Upper-left panel: Fourier spectrum
(logarithmic scale) corresponding to the 〈σz〉(t) time series.
The dotted line gives the analytical energy. Upper-right panel:
trajectory in the Sy − Sz plane of the 〈σ〉 vector.
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Fig. 3. Band structure, excluding the constant kinetic term
�

2k2
y/2m∗, corresponding to the first five transversal subbands

of a wire with �ω0 = 3.5 meV. Results for the full Hamilto-
nian (solid lines) and for the decoupled one (dotted lines) are
shown. Transitions from the lowest down branch in the decou-
pled (light grey) and full (dark grey) models are indicated by
arrows.

solve the problem. The first question arising is how the
band structure of the simplified Hamiltonian is modified
when transversal spin-orbit coupling is included. Figure 3
shows the corresponding band structure for the same wire
parameters considered above. In order to clarify the effect
of the transversal coupling the longitudinal kinetic term
�

2k2
y/2m

∗ has been subtracted and the analytical energies
are shown with dotted lines. It can be seen that for low
values of ky there is good agreement between the simpli-
fied and full Hamiltonians; but this is not true when we
approach a region of band crossings. When the (n+ 1)th
down subband reaches the up branch of the nth subband,
the transversal coupling produces a large effect, removing
the band degeneracy and opening a gap between these
two branches, (n + 1, ↓) and (n, ↑) [8]. The gap opened
clearly depends on the transversal subbands involved; the
higher transversal state the larger the gap, as easily no-
ticed from Figure 3. It can also be observed that the range
of ky’s where there is a good agreement between full cal-
culations and analytical model diminishes as the subband
index increases. These changes on the level structure sug-
gest significant modifications of the spin precession due to
the coupling with transversal motion.
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Fig. 4. Charge and spin transversal profiles for the three low-
est eigenstates of the full Hamiltonian in the anticrossing re-
gion. The panel labels correspond to the a, b and c branches
indicated in Figure 3.

As shown by Figure 3, transversal coupling effects
maximize at the analytical model crossings, occurring ap-
proximately when 2λRky = �ω0. The fulfillment of this
condition establishes a rough criterion to quantify the rel-
evance of the transversal spin-orbit coupling. Neverthe-
less, it must be also stressed that the coupling depends
sensitively on the subband index n.

The influence of the transversal coupling can also be
observed in the structure of the eigenspinors. In the an-
alytical model the eigenfunctions are states having well-
defined spin orientation. The transversal spin-orbit cou-
pling mixes the different subbands leading to a more
complex structure of the eigenstates. Figure 4 represents
the densities corresponding to three lowest eigenstates
in the region of maximum band anticrossing, i.e., ky =
1.70 × 106 cm−1. The lowest energy state corresponds to
a branch without crossings and, therefore, its eigenvalue
and eigenspinor are very similar to those of the analytical
model; spin density mainly oriented in −x direction with
a residual structure in z orientation. The other two eigen-
spinors differ substantially from those of the analytical
model; spin has no predominant orientation and displays
a complex texture very similar to those found in refer-
ence [10]. Charge and spin densities are related to the
eigenspinor components through the usual expressions

ρ(x) = |φnky↑(x) |2 + |φnky↓(x) |2

mz(x) = |φnky↑(x) |2 − |φnky↓(x) |2

mx(x) = 2Re
{
φnky↑(x)φ

∗
nky↓(x)

}
. (15)

Until now we have presented the effects produced by
the full spin-orbit coupling on the level scheme with re-
spect to the analytical model, having results in good agree-
ment with those of reference [8]. The question that we
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address next is how this modified band structure reflects
on the spin dynamics. We consider first the case of a parti-
cle having well-defined spin orientation at initial time and
y-momentum in the range of band anticrossings, i.e., an
spinor as in (12) evolving with ky = 1.70 × 106 cm−1 in
equation (10). The initial condition thus reads

fky(x, 0) ≡ 1
π1/4

[
m∗ω0

�

]1/4

e−
m∗ω0

2�
x2

(
1
0

)
. (16)

The spatial part of this injected spinor is equal to that
of the lowest analytic subband. In this way, we ensure
that it is in the low energy range, very close to the first
transversal subband.

The dynamical evolution of this injected particle is
shown in Figure 5. The spin trajectory on the Sy-Sz plane
is quite involved, manifesting a multifrequential evolution.
Indeed, the Fourier transform of the series shows that spin
evolves in time as a superposition of several frequencies
corresponding to the energy transitions between the dif-
ferent anticrossed branches. Since the gap opened by the
transversal spin-orbit coupling varies from one subband
to another, several precession frequencies are found in the
anticrossing region. On the contrary, the analytical model
predicts a common transition energy for all the transver-
sal subbands (see Fig. 3), leading to a unique precession
frequency. This feature proves that spin evolution in 2D
wires noticeably depends on the transversal state of the
particle. In the particular case of Figure 5 the precession
is characterized by two dominant frequencies, correspond-
ing to the transitions between the lowest branch and the
next two higher branches, represented by dark-gray ar-
rows in Figure 3. This two-frequency evolution yields a
variable spin amplitude, in agreement with the displayed
trajectory. The spin-orbit coupling makes the precessional
frequencies depend on ky in a non-trivial way. At the same
time, it gives rise to a ky-dependent spin modulation angle
that would lead to a certain degree of decoherence in the
spin transport through the wire.

Figure 6 shows the precessional spectra corresponding
to an initial spinor having well-defined spin (in +z di-
rection) and different transversal states. The precessional
spectrum corresponding to the first transversal subband
(n = 0) is that represented in Figure 5. The preces-
sional spectra for the higher transversal states, n = 1 and
n = 2, exhibit an enhanced multi-frequential character,
since more transitions significantly contribute to the spin
evolution. It can also be seen that the strength spreads
over a higher frequency interval as the subband index n is
increased. For low ky’s, out of the anticrossing region, the
spin evolution recovers a single-frequency behaviour, with
slight deviations from the analytical results (cf. Fig. 2).
Note that, in general, a pure up (+z) spin injected into
the wire will couple with the different spinor eigenstates
and, therefore, the multifrequential evolution can not be
avoided.

Another question of relevance is how the transversal
size influences the precession. From Figure 4 we can es-
timate the width of the wire in 90 − 120 nm for �ω0 =
3.5 meV. If we reduce the value of ω0 and maintain the

Fig. 5. Lower panel: time-evolution of the 〈σy〉 and 〈σz〉 ex-
pectation values for an injected wave-packet with well-defined
initial z spin orientation using the full Hamiltonian. Upper-left
panel: Fast Fourier transform (linear scale) of the 〈σz〉(t) se-
ries; the dotted line indicates the precession frequency given
by �ωP = 2λRky. Upper-right panel: trajectory in the Sy-Sz

plane of the 〈σ〉 vector.
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Fig. 6. Precessional spectra obtained from the time-evolution
of harmonic spinors with well-defined z spin corresponding to
the n = 1 and 2 transversal subbands in the anticrossing re-
gion. Dotted lines indicate the energy �ωP .
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2k2
y/2m∗ corresponding to the first five transversal subbands

of a wire with �ω0 = 0.7 meV for the full Hamiltonian (solid
lines) and for the decoupled one (dotted lines).

intensity of spin-orbit coupling the crossings of transversal
bands become more frequent as subbands are less spaced.
Figure 7 shows the corresponding band structure in the
case �ω0 = 0.70 meV; from the densities of the eigen-
spinors an estimated width of 200 − 250 nm can be ob-
tained for this wire. Deviations from the analytical band
structure are clearly visible in spite of the reduced ky range
displayed. This feature is reflected in the precessional spec-
tra which are fragmented even for relatively low ky’s. By
contrast, a wire of �ω0 = 14 meV, having an estimated
width of 40− 60 nm, shows a band structure very close to
that of the analytical decoupled Hamiltonian, as displayed
in Figure 8. This also reflects on the precessional spectra,
which are single-moded and match the value given by the
analytical formula �ωP = 2λRky.

In practical implementations of the Datta and Das spin
transistor [3] the above discussed spin decoherence at sub-
band crossings would strongly affect the device operation
and, therefore, it should be carefully considered in the de-
sign of appropriate working parameters. We can quantify
the decoherence by representing the spin amplitude after
the first spin flip, i.e., after the first π rotation. Figure 9
represents this quantity as a function of wire width (ω0)
for a ky value in the anticrossing region, ≈ �ω0/2λR. It
can be seen that as the wire becomes wider (lower ω0),
the multi-frequential precession leads to an important re-
duction of the z spin after the first inversion.
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Fig. 8. Same as Figure 7 but for �ω0 = 14 meV (Note the
enlarged ky-scale with respect to Fig. 7).
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Fig. 9. Amplitude of the 〈σz〉(t) signal after the first spin
flip as a function of the transversal confinement strength �ω0.
The inset illustrates the displayed quantity for the case �ω0 =
3.5 meV.

4 Summary

In summary, we have studied the electronic spin preces-
sion in quantum wires with Rashba spin-orbit coupling by
means of real time simulations. A detailed study of the
band structure for this system has been presented and
compared with a decoupled analytical model. It has been
shown that deviations from the simple spin precession
regime are determined by the relative importance of the
longitudinal spin-orbit energy (λRky) and the transver-
sal confining energy (�ω0) and that the spin precession



M. Vaĺın-Rodŕıguez et al.: Electron spin precession in semiconductor quantum wires with Rashba spin-orbit coupling 365

fragments into several frequencies whose weights depend
on the transversal state of the particle. The dependence
of the spin precession on the wire width has also been
studied and illustrated through the band structure.
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